$\frac{1.2 \text{ SETS, INTERVALS}}{\text{THEORY}}$

1. SETS

(a) Basic Information

A set (or class) is an unordered collection of objects, which are arranged in a group, The set with any numbers use the symbol braces $\{\}$, and will be denoted by Capital letters A, B, C, \ldots

The objects in a set are called **the elements**, or **members of the set**. A set is said to **contain its elements**. The objects comprising the set are called its elements or members and will be denoted by lower case letters a, b, c, \ldots . We write $a \in X$ when a is an element of the set X, we read a $a \in X$ as a is a **member of** X or a is an element of X or a belongs to X.

For describing sets there are two ways of describing, or specifying the members of, a set.

- by using a rule or semantic description: $S = \{x : x \in \mathbb{Z} \land 5 < x < 15\}$ which reads S is the set of x such that x is an integer and x is greater than 5 and less than 15.
- by extension that is, listing each member of the set. An extensional definition is denoted by enclosing the list of members in curly brackets:
 C = {4, 2, 1, 3}, D = {white, black, red, green}.

Definition 1 The universal set U is the set containing everything currently under consideration. or all the sets under consideration will likely to be subsets of a fixed set called Universal Set.

Definition 2 A set which has no element is called **the null set** or **empty set** and is symbolized by \emptyset .

(b) Subsets and Set Equality

Definition 3 A Set **A** is a subset of set **B** if every element of A is also an element of B.

$$A \subseteq B \Leftrightarrow \forall x \qquad x \in A \Rightarrow x \in B$$

Definition 4 Two sets A and B are equal if they have the same elements.

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Definition 5 : A is a proper subset of B if $A \subseteq B$ and $A \neq B$. This is denoted by $A \subset B$.

$$A \subset B \Leftrightarrow \forall x (x \in A \Rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$

(c) Set Operations

Definition 6 The union of two sets A and B denoted $A \cup B$, is the set of all objects that are members of A, or B.

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Definition 7 The intersection of two sets A and B denoted $A \cap B$, is the set of all objects that are members of A, or B.

$$A \cap B = \{x : x \in A \land x \in B\}$$

Definition 8 Two sets A and B are called mutually exclusive if their intersection is empty. Mutually exclusive sets are also called disjoint.

$$A \cap B = \emptyset$$

General intersection of several sets: $A_1 \cap \ldots \cap A_n = \{x : x \in A_1 \wedge \ldots \wedge A_n\}$

Definition 9 The complement of a set A, denoted by A^c , is the set of elements which belong to U but which do not belong to A. is defined by

$$A^c = \{x : x \in U \lor x \notin A\}$$

Definition 10 The difference between sets A and B, denoted A - B is the set containing the elements of A that are not in B.

$$A - B = \{x : x \in A \land x \notin B\} = A \cap B^c$$

A-B is also called the complement of B with respect to A (relative complement.)

Similarly
$$B - A = \{x : x \in B \land x \notin A\} = B \cap A^c$$

Definition 11 The symmetric difference between sets A and B, denoted $A \oplus B$ is the set containing the elements of A that are not in B or vice-versa.

$$A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$$

- (d) Algebra of sets
 - Idempotence: Union and intersection of a set with itself are

$$A \cup A = A$$

$$A \cap A = A$$

Associativity: If we have three sets A, B and C, then

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

• Commutativity: Union and intersection of two sets are commutative. Hence,

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

• Distributivity: In set theory, we have two distribution laws as

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• Identity: If \emptyset is an empty set, A is any given set and U is universal set then:

$$A \cup \emptyset = A$$

$$A \cap U = A$$

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

$$\bullet \ A \cup A^c = U$$

$$A\cap A^c=\emptyset$$

$$\bullet \ U^c = \emptyset$$

$$\emptyset^c = U$$

•
$$(A^c)^c = A$$

• De-Morgan's laws:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

2. INTERVALS

(a) Proper and bounded:

Open:
$$(a, b) = \{x : a < x < b\}$$

Closed:
$$[a, b] = \{x : a \le x \le b\}$$

Left-closed, right-open:
$$[a, b) = \{x : a \le x < b\}$$

Left-open, right-closed:
$$(a, b] = \{x : a < x \le b\}$$

(b) Left-bounded and right-unbounded:

Left-open:
$$(a, +\infty) = \{x : x > a\}$$

Left-closed
$$[a, +\infty) = \{x : x \ge a\}$$

Left-unbounded and right-bounded:

Right-open:
$$(-\infty, b) = \{x : x < b\}$$

Right-closed:
$$(-\infty, b] = \{x : x \le b\}$$

(c) unbounded at both ends (simultaneously open and closed): $(-\infty, +\infty) = \mathbb{R}$