2.1.06R | Test yourself | Properties of quadratic functions | Answers

Task: Work out the following features of the function given by the formula $f(x) = \frac{1}{2}x^2 - 4x + 6$

- 1. Coefficients *a*, *b*, *c* of the standard form $f(x) = ax^2 + bx + c$. $a = \frac{1}{2}$ b = -4 c = 6
- 2. Determinant Δ . $\Delta = b^2 4ac = (-4)^2 4 \cdot \frac{1}{2} \cdot 6 = 16 12 = 4$ $\Delta = 4$
- 3. Coordinates of the vertex W = (p, q) of the parabola, which the graph of the function.

$$p = \frac{-b}{2a} = \frac{-(-4)}{2\cdot\frac{1}{2}} = 4$$
 $q = \frac{-\Delta}{4a} = \frac{-4}{4\cdot\frac{1}{2}} = -2$ $W = (4, -2)$

- 4. Equation of the line of symmetry of the parabola, which is graph of the function x = p
- 5. Vertex form of the function. $f(x) = a(x-p)^2 + q$ $f(x) = \frac{1}{2}(x-4)^2 2$
 - Zeros of the function (if they exist). $x_1 = \frac{-b \sqrt{\Delta}}{2a} = \frac{4 \sqrt{4}}{2 \cdot \frac{1}{2}} = 2$ $x_1 = \frac{4 + \sqrt{4}}{2 \cdot \frac{1}{2}} = 6$

x = 4

- 7. Factored form (if exists). $f(x) = a(x x_1) (x x_1)$ $f(x) = \frac{1}{2}(x 2) (x 6)$
- 8. Graph of the function and line of symmetry.

6.

- 9. The domain of the function is the set *R* of all real numbers.
- 10. The range of the function is $(-2, \infty)$.
- 11. f(x) > 0 for $x \in (-\infty, \mathbf{2}) \cup (\mathbf{6}, \infty)$.
- 12. f(x) < 0 for $x \in (2, 6)$.
- 13. Maximum interval in which the function increases is $(4, \infty)$.
- 14. Maximum interval in which the function decreases is $(-\infty,4)$.
- 15. The maximum of f(x) for x from the closed interval (0,5) is **6**.
- 16. The minimum of f(x) for x from the closed interval (0,5) is 2.