2.1.06R | Test yourself | Properties of quadratic functions | Answers

Task: Work out the following features of the function given by the formula $f(x)=\frac{1}{2} x^{2}-4 x+6$

1. Coefficients a, b, c of the standard form $f(x)=a x^{2}+b x+c . \quad a=\frac{1}{2} \quad b=-4 \quad c=6$
2. Determinant Δ.

$$
\Delta=b^{2}-4 a c=(-4)^{2}-4 \cdot \frac{1}{2} \cdot 6=16-12=4 \quad \Delta=4
$$

3. Coordinates of the vertex $W=(p, q)$ of the parabola, which the graph of the function.

$$
p=\frac{-b}{2 a}=\frac{-(-4)}{2 \cdot \frac{1}{2}}=4 \quad q=\frac{-\Delta}{4 a}=\frac{-4}{4 \cdot \frac{1}{2}}=-2 \quad \boldsymbol{W}=(4,-2)
$$

4. Equation of the line of symmetry of the parabola, which is graph of the function $x=p$

$$
x=4
$$

5. Vertex form of the function.

$$
f(x)=a(x-p)^{2}+q \quad f(x)=\frac{1}{2}(x-4)^{2}-2
$$

6. Zeros of the function (if they exist). $x_{1}=\frac{-b-\sqrt{\Delta}}{2 a}=\frac{4-\sqrt{4}}{2 \cdot \frac{1}{2}}=2 \quad x_{1}=\frac{4+\sqrt{4}}{2 \cdot \frac{1}{2}}=\mathbf{6}$
7. Factored form (if exists).

$$
f(x)=a\left(x-x_{1}\right)\left(x-x_{1}\right) \quad f(x)=\frac{1}{2}(x-2)(x-6)
$$

8. Graph of the function and line of symmetry.

9. The domain of the function is the set R of all real numbers.
10. The range of the function is $\langle-2, \infty)$.
11. $f(x)>0$ for $x \in(-\infty, 2) \cup(6, \infty)$.
12. $f(x)<0$ for $x \in(2,6)$.
13. Maximum interval in which the function increases is $\langle 4, \infty)$.
14. Maximum interval in which the function decreases is $(-\infty, 4\rangle$.
15. The maximum of $f(x)$ for x from the closed interval $\langle 0,5\rangle$ is 6 .
16. The minimum of $f(x)$ for x from the closed interval $\langle 0,5\rangle$ is $\mathbf{- 2}$.
