1. Real Numbers with solutions

Task 1.01. (0-1) (2015-task 07)
Let us assume that $\frac{15}{16}$ is approximately equal to 0.9 . The approximation error expressed as a percentage will be equal to
A. 4%
B. 0.04%
C. 3%
D. 0.03%

Solution 1.01. A

$$
\frac{\left|\frac{15}{16}-0.9\right|}{\frac{15}{16}} \times 100 \%=\left|\frac{15}{16}-\frac{9}{10}\right| \times \frac{16}{15} \times 100 \%=\frac{6}{160} \times \frac{1600}{15} \%=4 \%
$$

Task 1.02. (0-1) (2016 - task 01)
The following table shows the number of votes received by each candidate in a by-election.

Candidate	I	II
Number of votes	13970	17780

The number of votes received by the winner was higher than the number of votes received by the other candidate by:
A. 56 percentage points.
B. 44 percentage points.
C. 27 percentage points.
D. $\quad 12$ percentage points.

Solution 1.02. D

Number of all votes: $17780+13970=31750$.
Winner percentage result: $\frac{17780}{31750} \times 100 \%=56 \%$.
Other candidate percentage result: 44%.
A percentage point (pp) is the unit for the arithmetic difference of two percentages: 56% $44 \%=12 \mathrm{pp}$.

1. Real Numbers with solutions

Task 1.03. (0-1) (2016-task 02)
If $\log a=\frac{1}{2}$ and $\log b=\frac{2}{5}$, where $a>0$ and $b>0$, then the value of the expression $\log \left(a^{2} b\right)$ equals
A. $\frac{7}{5}$
B. $\frac{4}{10}$
C. $\frac{13}{20}$
D. $\frac{1}{10}$

Solution 1.03. A
$\log \left(a^{2} b\right)=\log \left(a^{2}\right)+\log (b)=2 \log (a)+\log (b)=2 \times \frac{1}{2}+\frac{2}{5}=\frac{7}{5}$

Task 1.04. (0-1) (2016 - task 03)
The number $4\left(4^{18}+4^{17}\right)$ equals
A. 4^{35}
B. 4^{36}
C. 5×4^{17}
D. 5×4^{18}

Solution 1.04. D
$4\left(4^{18}+4^{17}\right)=4 \times 4^{17}(4+1)=4^{18} \times 5$

Task 1.05. (0-1) (2017-task 01)
It may be assumed that 0.3 is an approximation of $\frac{5}{16}$. What is the percentage error of this approximation?
A. 2.5%
B. 0.025%
C. 4%
D. 0.04%

Solution 1.05. C

$$
\frac{\left|\frac{5}{16}-0.3\right|}{\frac{5}{16}} \times 100 \%=\left|\frac{5}{16}-\frac{3}{10}\right| \times \frac{16}{5} \times 100 \%=\frac{2}{160} \times \frac{1600}{5} \%=4 \%
$$

Task 1.06. (0-1) (2017-task 02)
Among those listed below, the only positive number is:
A. $(-3)^{0}$
B. -3^{0}
C. $(-3)^{2017}$
D. -3^{2017}

Solution 1.06. A

$(-3)^{0}=1>0$

$$
-3^{0}=-1<0
$$

$$
(-3)^{2017}=-3^{2017}<0
$$

1. Real Numbers with solutions

Task 1.07. (0-1) (2018-task 10)
In February, the price of a certain product remained constant, but on March $1^{\text {st }}$ it was increased by 10%. After a week, the new price was decreased by 20%. As a result of these two changes, the initial price of the product was decreased by
A. 12%
B. 14%
C. 9%
D. 4%

Solution 1.07. A

Let x be the first price.
The increase factor is $100 \%+10 \%=110 \%=1.1$.
The decrease factor is $100 \%-20 \%=80 \%=0.8$.
After the two price changes the new price will by 12% less
because: $x \times 1.1 \times 0.8=x \times 0.88=88 \% x=x-12 \% x$

Task 1.08. (0-1) (2019-task 01)
If we assume that $\frac{8}{9}$ is approximately equal to $0.9 /$ the percentage error of this approximation is equal to:
A. 1%
B. 1.25%
C. 0.0125%
D. 0.01%

Solution 1.08. B

$\frac{\left|\frac{8}{9}-0.9\right|}{\frac{8}{9}} \times 100 \%=\left|\frac{8}{9}-\frac{9}{10}\right| \times \frac{9}{8} \times 100 \%=\frac{1}{90} \times \frac{900}{8} \%=1.25 \%$

1. Real Numbers with solutions

Task 1.09. (0-1) (2020 - task 01)
The reciprocal of $3 \frac{2}{9}-5 \frac{1}{3} \times \sqrt{\frac{49}{144}}$ is:
A. -9
B. $-\frac{1}{9}$
C. $\frac{1}{9}$
D. 9

Solution 1.09. C
$3 \frac{2}{9}-5 \frac{1}{3} \times \sqrt{\frac{49}{144}}=3 \frac{2}{9}-\frac{16}{3} \times \frac{7}{12}=\frac{29}{9}-\frac{28}{9}=\frac{1}{9}$

Task 1.10. (0-1) (2020 - task 05)
The number $\frac{4^{8}+4^{7}}{320 \times 4^{4}}$ is equal to:
A. 4^{-1}
B. 4^{0}
C. 4^{1}
D. 4^{2}

Solution 1.10. B
$\frac{4^{8}+4^{7}}{320 \times 4^{4}}=\frac{4^{7}(4+1)}{4^{3} \times 5 \times 4^{4}}=1=4^{0}$

Task 1.11. (0-1) (2020 - task 06)
If $\log _{3} 5=0.68$ then $\log _{3} 45$ equals:
A. 1.32
B. 1.36
C. 2.68
D. 6.8

Solution 1.11. C
$\log _{3} 45=\log _{3}\left(3^{2} \times 5\right)=\log _{3}\left(3^{2}\right)+\log _{3}(5) \approx 2+0.68=2.68$

1. Real Numbers with solutions

Task 1.12. (0-1) (2021-task 02)
The Seine is shorter than the Vistula by 25%, and the Rhine is longer than the Vistula by 17%. Thus the Rhine is longer than the Seine by
A. 64%
B. 56%
C. 42%
D. 21%

Solution 1.12. B

Let S be the length of Seine river.
Let V be the length of Seine river.
Let R be the length of Seine river.
$S=0.75 V \quad R=1.17 V$
$\frac{R-S}{S}=\frac{1.17 \mathrm{~V}-0.75 \mathrm{~V}}{0.75 \mathrm{~V}}=\frac{0.42 \mathrm{~V}}{0.75 \mathrm{~V}}=\frac{42}{75}=\frac{14}{25}=\frac{56}{100}=56 \%$

Task 1.13. (0-4) (2021- task 18)
Write down each of the sentences a-d below as an algebraic expression.
a) The difference of a squared and b.
b) The absolute value of the sum of b and tripled a.
c) The quotient of a squared and the third power of b.
d) The product of a increased by 5 and the square root of b.

Solution 1.13.

1.13 a) $a^{2}-b$
b) $|b+3 a|$
c) $a^{2} \div b^{3}$
d) $(a+5) \times \sqrt{b}$

1. Real Numbers with solutions

Answers

1.01 A	1.02 D	1.03 A	1.04 D	1.05 C
1.06 A	1.07 A	1.08 B	1.09 C	1.10 B
1.11 C	1.12 B			

1.13 a) $a^{2}-b$
b) $|b+3 a|$
c) $a^{2} \div b^{3}$
d) $(a+5) \times \sqrt{b}$

