5. Analytic geometry

Task 5.01. (0-1) (2015- task 06)
The points $K=(1,3), L=(-3,2), M=(-2,-2), N=(2,-1)$ are the vertices of a square. The area of the square is
A. $\sqrt{17}$
B. 17
C. $\sqrt{34}$
D. 34

Task 5.02. (0-1) (2015 - task 08)
The line k passes through the point $S=(-3,1)$ and is perpendicular to the line l with the equation $y=-\frac{1}{3} x+12$. The line k has the following equation:
A. $y=-\frac{1}{3} x$
B. $y=3 x$
C. $y=-\frac{1}{3} x-\frac{8}{3}$
D. $y=3 x+10$

Task 5.03. (0-1) (2016 - task 11)
The straight lines $2 x+3 y-11=0$ and $y=a x$ are perpendicular when
A. $a=-\frac{1}{2}$
B. $a=\frac{2}{3}$
C. $a=\frac{3}{2}$
D. $a=2$

Task 5.04. (0-1) (2017 - task 10)
Line k with the equation $y=-\frac{1}{3} x+11$ is parallel to the line l which contains $K=(-3,9)$. The equation of the line l is:
A. $y=-\frac{1}{3} x+10$
B. $y=-\frac{1}{3} x+8$
C. $y=3 x+18$
D. $y=3 x$
5. Analytic geometry

Task 5.05. (0-3) (2017 - task 19)
Two points, $M=(-5,-3)$ and $N=(3,11)$, are located on the Cartesian plane.
Complete the following sentences.
(a) The equation of the line $M N$ is \qquad
(b) The distance of point M from point N is
(c) The midpoint of the segment $M N$ is $S=\left(x_{S}, y_{S}\right)$, where $x_{S}=$ \qquad and $y_{S}=$ \qquad

Information for task 5.6-5.8:
Given are points $A(-2,1)$ and $B(3,4)$.
Task 5.06. (0-1) (2018 - task 01)
The length of the line segment $A B$ is equal to
A. $\sqrt{34}$
B. $\sqrt{50}$
C. $\sqrt{10}$
D. $\sqrt{26}$

Task 5.07. (0-1) (2018 - task 02)
Points A and B lie on the line
A. $y=\frac{3}{5} x+\frac{1}{5}$
B. $y=\frac{3}{5} x+\frac{11}{5}$
C. $y=\frac{5}{3} x+\frac{11}{3}$
D. $y=\frac{5}{3} x+\frac{7}{3}$

Task 5.08. (0-1) (2018 - task 03)
The centre of the line segment $A B$ is the point
A. $S=\left(\frac{1}{2}, \frac{3}{2}\right)$
B. $S=\left(\frac{5}{2}, \frac{3}{2}\right)$
C. $S=\left(\frac{5}{2}, \frac{1}{2}\right)$
D. $S=\left(\frac{1}{2}, \frac{5}{2}\right)$

Task 5.09. (0-1) (2018 - task 04)
The line l passes through the point $A=(-5,6)$ and is parallel to the line k given by the equation $y=2 x-7$. The line l has the following equation:
A. $y=-\frac{1}{2} x+\frac{7}{2}$
B. $y=-\frac{1}{2} x+\frac{17}{2}$
C. $y=2 x-4$
D. $y=2 x+16$

Task 5.10. (0-1) (2019 - task 07)
The line m passes through the point $K=(-2,19)$ and is perpendicular to the line l given by the equation $y=\frac{1}{8} x+2019$. The equation of the line m is:
A. $y=-8 x+3$
B. $y=-8 x+150$
C. $y=-\frac{1}{8} x+\frac{75}{4}$
D. $y=-\frac{1}{8} x+\frac{3}{8}$

Task 5.11. (0-4) (2019 - task 18)
Points $A=(8,-1), B=(-4,-23)$, and $K=(1,9)$ are located on a Cartesian plane. The point S is the midpoint of the line segment $A B$. The line m is parallel to the line $A B$ and passes through the point K.

Complete the following sentences. Enter the correct numbers in sentences (a) and (b), and write the equation of the line in sentences (c) and (d).
(a) The first coordinate of the point S equals \qquad and the second coordinate of this point is \qquad
(b) The distance between points A and B equals \qquad
(c) The line $A B$ has the equation
(d) The line m has the equation \qquad

Task 5.12. (0-3) (2020 - task 20)
Point $A=(-1,2)$ is the end point of a line segment $A B$, whereas point $S=\left(1, \frac{1}{2}\right)$ is the midpoint of the line segment $A B$. Complete the following sentences.
(a) The coordinates of point B are: \qquad
\qquad
(b) The line segment $A B$ is reflected in x-axis. The coordinates of the endpoints of the image of $A B$ after reflection are: $A^{\prime}=($ \qquad), $B^{\prime}=($ \qquad ,)).
(c) The length of the line segment $A B$ is \qquad

Task 5.13. (0-5) (2021 - task 17)
The triangle $A B C$ is a right-angled triangle. The length of the hypotenuse $A C$ is equal to 65. The vertex A has coordinates $(-15,20)$, the vertex B is at the origin of the coordinate system, and the vertex C has both coordinates positive.

Complete the sentences $\mathrm{a}-\mathrm{c}$ below by writing the correct numeric values in the blanks.
(a) The length of the shortest side of the triangle $A B C$ is equal to \qquad ..
(b) The area of the triangle $A B C$ is equal to \qquad .
(c) The radius of the circle circumscribed on the triangle $A B C$ is equal to \qquad . . Write the equation of the straight line BC.
(d) The straight line $B C$ has the equation \qquad .

Write the coordinates of the centre of the circle circumscribed on the triangle $\boldsymbol{A B C}$.
(e) The centre of the circle circumscribed on the triangle $A B C$ has coordinates

