Task 5.01. (0-1) (2015-task 06)
The points $K=(1,3), L=(-3,2), M=(-2,-2), N=(2,-1)$ are the vertices of a square. The area of the square is
A. $\sqrt{17}$
B. 17
C. $\sqrt{34}$
D. 34

Solution 5.01. B

Let a be the side length of the square.
The area of the square is equal to a^{2}.
By Pythagoras's theorem

$$
\begin{aligned}
& a^{2}=1^{2}+4^{2} \\
& a^{2}=17
\end{aligned}
$$

So the area of the square is 17 .

Task 5.02. (0-1) (2015 - task 08)
The line k passes through the point $S=(-3,1)$ and is perpendicular to the line l with the equation $y=-\frac{1}{3} x+12$. The line k has the following equation:
A. $y=-\frac{1}{3} x$
B. $y=3 x$
C. $y=-\frac{1}{3} x-\frac{8}{3}$
D. $y=3 x+10$

Solution 5.02. D

Let $y=a x+b$ be the slope-interception equation of the line k.
The lines k and l are perpendicular so the product of their gradients is equal to -1 .

$$
\begin{gathered}
a \times\left(-\frac{1}{3}\right)=-1 \\
a=3
\end{gathered}
$$

Now, we know that line k has the equation $y=3 x+b$.
We also know that the line k goes through the point $S=(-3,1)$, which means that the pair of numbers $x=-3, y=1$ satisfies the equation $y=3 x+b$.

$$
1=3 \times(-3)+b
$$

Therefore $b=10$ and the line k has the equation $y=3 x+10$.

5. Analytic geometry

Task 5.03. (0-1) (2016 - task 11)
The straight lines $2 x+3 y-11=0$ and $y=a x$ are perpendicular when
A. $a=-\frac{1}{2}$
B. $a=\frac{2}{3}$
C. $a=\frac{3}{2}$
D. $a=2$

Solution 5.03. C
Let's convert the general equation $2 x+3 y-11=0$ to the slope-intercept equation form:

$$
\begin{array}{ll}
2 x+3 y-11=0 & /-2 x+11 \\
3 y=-2 x+11 & / \div 3 \\
y=-\frac{2}{3} x+\frac{11}{3} &
\end{array}
$$

The lines given by equations $y=-\frac{2}{3} x+\frac{11}{3}$ and $y=a x$ are perpendicular so the product of their gradients is equal to -1 :
$-\frac{2}{3} \times a=-1$
$1 \times\left(-\frac{3}{2}\right)$
$a=\frac{3}{2}$

Task 5.04. (0-1) (2017 - task 10)
Line k with the equation $y=-\frac{1}{3} x+11$ is parallel to the line l which contains $K=(-3,9)$. The equation of the line l is:
A. $y=-\frac{1}{3} x+10$
B. $y=-\frac{1}{3} x+8$
C. $y=3 x+18$
D. $y=3 x$

Solution 5.04. B

Let $y=a x+b$ be the slope-interception equation of the line l.
The lines k and l are parallel so their gradients are equal and thus $a=-\frac{1}{3}$
Now, we know that line l has the equation $y=-\frac{1}{3} x+b$.
We also know that the line l contains the point $K=(-3,9)$, which means that the pair of numbers $x=-3, y=9$ satisfies the equation $y=-\frac{1}{3} x+b$.

$$
9=-\frac{1}{3} \times(-3)+b
$$

Therefore $b=8$ and the line k has the equation $y=-\frac{1}{3} x+8$.

5. Analytic geometry

Task 5.05. (0-3) (2017 - task 19)
Two points, $M=(-5,-3)$ and $N=(3,11)$, are located on the Cartesian plane.
Complete the following sentences.
(a) The equation of the line $M N$ is \qquad .. .
(b) The distance of point M from point N is \qquad
(c) The midpoint of the segment $M N$ is $S=\left(x_{S}, y_{S}\right)$, where $x_{S}=$ \qquad and $y_{S}=$ \qquad

Solution 5.05. (a) $y=\frac{7}{4} x+\frac{23}{4}$ (b) $2 \sqrt{65}$ (c) -1 and 4
(a) Let $y=a x+b$ be the slope-intercept equation of the line $M N$.
$M(-5,-3) \in M N$, thus $-3=a \times(-5)+b$.
$N(3,11) \in M N$, thus $11=a \times 3+b$.
This way we have got the set if equations to solve:

$$
\left\{\begin{array} { c }
{ - 5 a + b = - 3 } \\
{ 3 a + b = 1 1 }
\end{array} \quad \left\{\begin{array} { l }
{ b = 5 a - 3 } \\
{ 3 a + (5 a - 3) = 1 1 }
\end{array} \quad \left\{\begin{array}{l}
b=\frac{23}{4} \\
a=\frac{7}{4}
\end{array}\right.\right.\right.
$$

So the equation of the line $M N$ in slope-intercept form is $y=\frac{7}{4} x+\frac{23}{4}$.
We can also convert this slope-intercept equation to a general form with integer coefficients:
$y=\frac{7}{4} x+\frac{23}{4}$
$\frac{7}{4} x-y+\frac{23}{4}=0$
So the line $M N$ in one of its general forms is $7 x-4 y+23=0$.
(b) The distance between points M and N is

$$
\begin{aligned}
& |M N|=\sqrt{(3-(-5))^{2}+(11-(-3))^{2}} \\
& |M N|=\sqrt{8^{2}+14^{2}}=\sqrt{64+196}=\sqrt{260}=2 \sqrt{65}
\end{aligned}
$$

(c) The midpoint $S=\left(x_{S}, y_{S}\right)$ of the segment $M N$ has coordinates:

$$
\begin{aligned}
& x_{s}=\frac{-5+3}{2}=-1 \\
& y_{s}=\frac{-3+11}{2}=4
\end{aligned}
$$

5. Analytic geometry

Task 5.05

Information for task 5.6 - 5.8:
Given are points $A(-2,1)$ and $B(3,4)$.
Task 5.06. (0-1) (2018 - task 01)
The length of the line segment $A B$ is equal to
A. $\sqrt{34}$
B. $\sqrt{50}$
C. $\sqrt{10}$
D. $\sqrt{26}$

Solution 5.06. A
$|A B|=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}}$
$|A B|=\sqrt{(3-(-2))^{2}+(4-1)^{2}}$
5. Analytic geometry

$$
|A B|=\sqrt{5^{2}+3^{2}}=\sqrt{25+9}=\sqrt{34}
$$

Task 5.07. (0-1) (2018 - task 02)
Points A and B lie on the line
A. $y=\frac{3}{5} x+\frac{1}{5}$
B. $y=\frac{3}{5} x+\frac{11}{5}$
C. $y=\frac{5}{3} x+\frac{11}{3}$
D. $y=\frac{5}{3} x+\frac{7}{3}$

Solution 5.07. B

Let $y=a x+b$ be the slope-intercept equation of the line $A B$.
$A(-2,1) \in A B$, thus $1=a \times(-2)+b$.
$B(3,4) \in A B$, thus $4=a \times 3+b$.
This way we have got the set if equations to solve:

$$
\left\{\begin{array} { r }
{ - 2 a + b = 1 } \\
{ 3 a + b = 4 }
\end{array} \quad \left\{\begin{array} { l }
{ b = 2 a + 1 } \\
{ 3 a + (2 a + 1) = 4 }
\end{array} \quad \left\{\begin{array}{l}
b=\frac{11}{5} \\
a=\frac{3}{5}
\end{array}\right.\right.\right.
$$

So the equation of the line $A B$ in slope-intercept form is $y=\frac{3}{5} x+\frac{11}{5}$.

Task 5.08. (0-1) (2018 - task 03)
The centre of the line segment $A B$ is the point
A. $S=\left(\frac{1}{2}, \frac{3}{2}\right)$
B. $S=\left(\frac{5}{2}, \frac{3}{2}\right)$
C. $S=\left(\frac{5}{2}, \frac{1}{2}\right)$
D. $S=\left(\frac{1}{2}, \frac{5}{2}\right)$

Solution 5.08. D

$$
S=\left(\frac{x_{A}+x_{B}}{2}, \frac{y_{A}+y_{B}}{2}\right)=\left(\frac{-2+3}{2}, \frac{1+4}{2}\right)=\left(\frac{1}{2}, \frac{5}{2}\right)
$$

Task 5.09. (0-1) (2018 - task 04)
The line l passes through the point $A=(-5,6)$ and is parallel to the line k given by the equation $y=2 x-7$. The line l has the following equation:
A. $y=-\frac{1}{2} x+\frac{7}{2}$
B. $y=-\frac{1}{2} x+\frac{17}{2}$
C. $y=2 x-4$
D. $y=2 x+16$

5. Analytic geometry

Solution 5.09. D

Let $y=a x+b$ be the slope-interception equation of the line l.
The lines k and l are parallel so their gradients are equal and thus $a=2$
Now, we know that line l has the equation $y=2 x+b$.
We also know that the line l passes through the point $A=(-5,6)$, which means that the pair of numbers $x=-5, y=6$ satisfies the equation $y=2 x+b$:

$$
6=2 \times(-5)+b
$$

Therefore $b=16$ and the line l has the equation $y=2 x+16$.

Task 5.10. (0-1) (2019 - task 07)
The line m passes through the point $K=(-2,19)$ and is perpendicular to the line l given by the equation $y=\frac{1}{8} x+2019$. The equation of the line m is:
A. $y=-8 x+3$
B. $y=-8 x+150$
C. $y=-\frac{1}{8} x+\frac{75}{4}$
D. $y=-\frac{1}{8} x+\frac{3}{8}$

Solution 5.10. A

Let $y=a x+b$ be the slope-interception equation of the line m.
The lines m and l are perpendicular so the product of their gradients is equal to -1 .

$$
\begin{gathered}
a \times \frac{1}{8}=-1 \\
a=-8
\end{gathered}
$$

Now, we know that line m has the equation $y=-8 x+b$.
We also know that the line m passes through the point $K=(-2,19)$, which means that the pair of numbers $x=-2, y=19$ fulfils the equation $y=3 x+b$.

$$
19=-8 \times(-2)+b
$$

Therefore $b=3$ and the line k has the equation $y=-8 x+3$.

5. Analytic geometry

Task 5.11. (0-4) (2019 - task 18)
Points $A=(8,-1), B=(-4,-23)$, and $K=(1,9)$ are located on a Cartesian plane.
The point S is the midpoint of the line segment $A B$. The line m is parallel to the line $A B$ and passes through the point K.

Complete the following sentences. Enter the correct numbers in sentences (a) and (b), and write the equation of the line in sentences (c) and (d).
(a) The first coordinate of the point S equals \qquad and the second coordinate of this point is \qquad
(b) The distance between points A and B equals \qquad
(c) The line $A B$ has the equation \qquad
(d) The line m has the equation \qquad

Solution 5.11. (a) $(2,-12)$ (b) $2 \sqrt{157}$ (c) $y=\frac{11}{6} x-\frac{94}{6}$ (d) $y=\frac{11}{6} x+\frac{43}{6}$.
(a) $S=\left(\frac{x_{A}+x_{B}}{2}, \frac{y_{A}+y_{B}}{2}\right)=\left(\frac{8+(-4)}{2}, \frac{-1+(-23)}{2}\right)=(2,-12)$
(b) $|A B|=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}}$

$$
\begin{aligned}
& |A B|=\sqrt{(-4-8)^{2}+(-23-(-1))^{2}} \\
& |A B|=\sqrt{(-12)^{2}+(-22)^{2}}=\sqrt{144+484}=\sqrt{628}=2 \sqrt{157}
\end{aligned}
$$

(c) Let $y=a x+b$ be the slope-intercept equation of the line $A B$.
$A(8,-1) \in A B$, thus $-1=a \times 8+b$.
$B(-4,-23) \in A B$, thus $-23=a \times(-4)+b$.
This way we have got the set if equations to solve:

$$
\left\{\begin{array} { c }
{ 8 a + b = - 1 } \\
{ - 4 a + b = - 2 3 }
\end{array} \quad \left\{\begin{array} { c }
{ b = - 8 a - 1 } \\
{ - 4 a + (- 8 a - 1) = - 2 3 }
\end{array} \quad \left\{\begin{array}{c}
b=-\frac{94}{6} \\
a=\frac{11}{6}
\end{array}\right.\right.\right.
$$

So the equation of the line $A B$ in slope-intercept form is $y=\frac{11}{6} x-\frac{94}{6}$.
You can also convert the equation to a general form with integer coefficients, for example:
is $y=\frac{11}{6} x-\frac{94}{6} \quad / \times 6$
5. Analytic geometry

$$
\begin{aligned}
& 6 y=11 x-94 \quad /-11 x+94 \\
& -11 x+6 y+94=0
\end{aligned}
$$

(d) Let $y=a x+b$ be the slope-interception equation of the line m.

The lines m and $A B$ are parallel, so their gradients are equal and thus $a=\frac{11}{6}$.
Now, we know that line l has the equation $y=\frac{11}{6} x+b$.
We also know that the line l passes through the point $K=(1,9)$, which means that the pair of numbers $x=1, y=9$ satisfies the equation $y=\frac{11}{6} x+b$. $9=\frac{11}{6} \times 1+b$
Therefore $b=\frac{43}{6}$ and the line l has the equation $y=\frac{11}{6} x+\frac{43}{6}$.
Again, you can also convert the equation to a general form with integer coefficients, for example:

$$
\begin{array}{ll}
y=\frac{11}{6} x+\frac{43}{6} & / \times 6 \\
6 y=11 x+43 & 1-11 x-43 \\
-11 x+6 y-43= & 0
\end{array}
$$

Task 5.12. (0-3) (2020 - task 20)
Point $A=(-1,2)$ is the end point of a line segment $A B$, whereas point $S=\left(1, \frac{1}{2}\right)$ is the midpoint of the line segment $A B$. Complete the following sentences.
(a) The coordinates of point B are: \qquad
\qquad
(b) The line segment $A B$ is reflected in x-axis. The coordinates of the endpoints of the image of $A B$ after reflection are: $A^{\prime}=($ \qquad
\qquad), $B^{\prime}=($ \qquad
\qquad .).
(c) The length of the line segment $A B$ is \qquad .

Solution 5.12. (a) (3, - 1)
(b) $(-1,-2),(3,1)$
(c) 5
(a) Let $B=\left(x_{B}, y_{B}\right)$. Then $\frac{-1+x_{B}}{2}=1$ and $\frac{2+y_{B}}{2}=\frac{1}{2}$. Thus $x_{B}=3$ and $y_{B}=-1$. $B=(3,-1)$.
(b) $A^{\prime}=\left(x_{A},-y_{A}\right)=(-1,-2) \quad B^{\prime}=\left(x_{B},-y_{B}\right)=(3,1)$
(c) $|A B|=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}}$
$|A B|=\sqrt{(-1-3)^{2}+(2-(-1))^{2}}$
$|A B|=\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5$

Task 5.13. (0-5) (2021 - task 17)
The triangle $A B C$ is a right-angled triangle. The length of the hypotenuse $A C$ is equal to 65. The vertex A has coordinates $(-15,20)$, the vertex B is at the origin of the coordinate system, and the vertex C has both coordinates positive.

Complete the sentences $\mathrm{a}-\mathrm{c}$ below by writing the correct numeric values in the blanks.
(a) The length of the shortest side of the triangle $A B C$ is equal to \qquad .
(b) The area of the triangle $A B C$ is equal to \qquad .
(c) The radius of the circle circumscribed on the triangle $A B C$ is equal to \qquad . .
5. Analytic geometry

Write the equation of the straight line $\boldsymbol{B C}$.
(d) The straight line $B C$ has the equation \qquad

Write the coordinates of the centre of the circle circumscribed on the triangle $\boldsymbol{A B C}$.
(e) The centre of the circle circumscribed on the triangle $A B C$ has coordinates
\qquad .. .
Solution 5.13 (a) 25
(b) 750
(c) 32.5
(d) $y=\frac{3}{4} x$
(e) $\left(16 \frac{1}{2}, 28\right)$
(a)

- $|A B|=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}}$

$$
\begin{aligned}
& |A B|=\sqrt{(0-(-15))^{2}+(0-20)^{2}}=\sqrt{225+400}=\sqrt{625} \\
& |A B|=25
\end{aligned}
$$

- $|B C|^{2}+|B A|^{2}=|A C|^{2}$
$|B C|^{2}+25^{2}=65^{2}$
$|B C|^{2}=65^{2}-25^{2}$
$|B C|=60$
- The lengths of triangle of sides are $|A B|=25,|B C|=60,|A C|=65$.
- So the length of the shortest side is 25 .
(b) The area of the triangle $A B C$ is equal $\frac{|A B| \times|B C|}{2}=\frac{25 \times 60}{2}=750$

5. Analytic geometry

(c) The triangle $A B C$ is a right angled triangle so the radius of the circle circumscribed on it is the half of its hypotenuse: $R=\frac{65}{2}=32.5$
(d) First we are going to find out the equation of the line $A B$ and then $B C$.

1. Let $y=a x+b$ be the slope-intercept equation of the line $A B$.

$$
\begin{aligned}
& A(-15,20) \in A B, \text { thus } \quad 20=a \times(-15)+b \\
& B(0,0) \in A B, \text { thus } 0=a \times 0+b
\end{aligned}
$$

This way we have got the set if equations to solve:

$$
\left\{\begin{array} { c }
{ 0 a + b = 0 } \\
{ - 1 5 a + b = 2 0 }
\end{array} \quad \left\{\begin{array} { c }
{ b = 0 } \\
{ - 1 5 a + 0 = 2 0 }
\end{array} \quad \left\{\begin{array}{c}
b=0 \\
a=-\frac{4}{3}
\end{array}\right.\right.\right.
$$

So the equation of the line $A B$ in slope-intercept form is $y=-\frac{4}{3} x$.
2. Let $y=c x+d$ be the slope-intercept equation of the line $B C$.
$B(0,0) \in B C$, thus $0=c \times 0+d$ and so $d=0$.
We know that the triangle $A B C$ is a right angled triangle and $B C$ is its hypotenuse. For this reason the lines $A B$ and $B C$ are perpendicular and therefore the product of their gradients is equal to -1 :
$a \times c=-1$
$-\frac{4}{3} \times c=-1$
$c=\frac{3}{4}$

So the equation of the line $B C$ in slope-intercept form is $y=\frac{3}{4} x$.
(e) First we will find coordinates of the point C and then the centre O , which is the middle of the segment AC.

1. The point $C\left(x_{C}, y_{C}\right)$ is on line $B C$, so $y_{C}=\frac{3}{4} x_{C}$.

Moreover $|A C|=65$ so

$$
\begin{aligned}
& \sqrt{\left(x_{C}-x_{A}\right)^{2}+\left(y_{C}-y_{A}\right)^{2}}=65 \\
& \sqrt{\left(x_{C}-(-15)\right)^{2}+\left(\frac{3}{4} x_{C}-20\right)^{2}}=65 \\
& \sqrt{\left(x_{C}+15\right)^{2}+\left(\frac{3}{4} x_{C}-20\right)^{2}}=65 \\
& \left(x_{C}+15\right)^{2}+\left(\frac{3}{4} x_{C}-20\right)^{2}=65^{2} \\
& x_{C}{ }^{2}+30 x_{C}+225+\frac{9}{16} x_{C}^{2}-30 x_{C}+400=4225 \\
& \frac{25}{16} x_{C}{ }^{2}=3600
\end{aligned}
$$

5. Analytic geometry

$$
\begin{aligned}
& x_{C}{ }^{2}=\frac{3600 \times 16}{25} \\
& x_{C}{ }^{2}=36 \times 4 \times 16
\end{aligned}
$$

From the assumption, the coordinates of point C are positive, so

$$
\begin{aligned}
& x_{C}=6 \times 2 \times 4 \\
& x_{C}=48 \\
& y_{C}=\frac{3}{4} \times 48 \\
& y_{C}=36
\end{aligned}
$$

2. The centre $\mathrm{O}\left(x_{0}, y_{O}\right)=\left(\frac{x_{A}+x_{C}}{2}, \frac{y_{A}+y_{C}}{2}\right)=\left(\frac{-15+48}{2}, \frac{20+36}{2}\right)=\left(16 \frac{1}{2}, 28\right)$

3. Analytic geometry

Answers

5.01. B
5.02. D
5.03. C
5.04. B
5.05. B
5.06. B
5.07. B
5.08. D
5.09. D
5.10. A
5.11. (a) $(2,-12)$
(b) $2 \sqrt{157}$
(c) $y=\frac{11}{6} x-\frac{94}{6}$
(d) $y=\frac{11}{6} x+\frac{43}{6}$
5.12. (a) $B=(3,-1)$
(b) $A^{\prime}=(-1,-2), B^{\prime}=(3,1)$
(c) $|A B|=5$
5.13 (a) 25
(b) 750
(c) 32.5
(d) $y=\frac{3}{4} x$
(e) $\left(16 \frac{1}{2}, 28\right)$

