Information for tasks 6.1-6.2.
The acute angle of a rhombus is 45° and the area of the rhombus is $100 \sqrt{2}$.

Task 6.01. (0-1) (2015 - task 09)
The height of the rhombus is
A. $20 \sqrt{2}$
B. 20
C. $10 \sqrt{2}$
D. 10

Task 6.02. (0-1) (2015 - task 10)
The tangent of the obtuse angle of the rhombus is equal to
A. -1
B. 1
C. $\frac{\sqrt{2}}{2}$
D. $-\frac{\sqrt{2}}{2}$

Task 6.03. (0-1) (2015 - task 10)

The triangle $A B C$ is circumscribed by a circle with a radius of 7 cm . (see illustration).
The centre O of a circle lies on the side $A B$, and the cosine of the angle $B A C$ is equal to $\frac{2 \sqrt{10}}{7}$.

The length of the line segment $B C$ is equal to
A. $\frac{\sqrt{10}}{49}$
B. 6
C. $\frac{2 \sqrt{10}}{49}$
D. 3

Task 6.04. (0-1) (2016 - task 07)
In a right-angled triangle, one of the shorter sides is $\sqrt{3}$ long, and the angle opposite that side is α. The length of the hypotenuse of this triangle is $2 \sqrt{2}$.

The value of the expression $\frac{1}{\sin \alpha}$ is
A. $\frac{\sqrt{11}}{8}$
B. $\frac{2 \sqrt{2}}{3}$
C. $\frac{2 \sqrt{6}}{3}$
D. $\frac{\sqrt{22}}{4}$

Task 6.05. (0-1) (2016 - task 08)
The points K, L, and M are colinear, and point M is located between points K and L. It is also known that $|K L|=11$ and $|L M|=5|K M|$. In that case, the length of the line segment $L M$ is
A. $\frac{55}{6}$
B. $\frac{11}{6}$
C. $\frac{11}{5}$
D. $\frac{33}{5}$

Task 6.06. (0-1) (2016 - task 09)
On the side $L M$ of the triangle $K L M$ the point N was selected so that the length of the line segment $M N$ is twice the length of the line segment $L N$. The area of the triangle $K L N$ equals 7.5. Thus, the area of the triangle $K L M$ equals

A. 15
B. 18.75
C. 22.5
D. 30

Task 6.07. (0-1) (2016 - task 10)
A triangle was inscribed into a circle with the centre point O as shown in the illustration. The angle α of this triangle is

A. 28°
B. 42°
C. 63°
D. 69°

Task 6.08. (0-2) (2016 - task 17)
In an isosceles trapezium, the internal acute angle is 60°. The side and the shorter base are equal. The perimeter of the trapezium equals 50 . Complete the following sentences.
(a) The shorter base of the trapezium equals \qquad
(b) The area of the trapezium equals \qquad

Task 6.09. (0-1) (2017 - task 08)
α is a positive acute angle. The cosine value of α is three times greater than its sine value. Therefore, the tangent value of α is:
A. $\frac{1}{3}$
B. 3
C. $\sqrt{10}$
D. $\frac{\sqrt{10}}{10}$

Task 6.10. (0-1) (2017 - task 09)
K, L and M are three points which lie on a circle with centre O (see the illustration). The obtuse angle $K O M$ is 170°. The acute angle $K L M$ is:

A. 85°
B. 80°
C. 75°
D. 70°

Task 6.11. (0-1) (2017 - task 10)
The acute angle of a rhombus is 30° and the length of one side of the rhombus is 30 . The area of the rhombus is:
A. 900
B. 90
C. 450
D. 45

Task 6.12. (0-3) (2018 - task 14)
$A B C$ is a triangle with $|A C|=|B C|=13$ and $|A B|=10$. Complete the following sentences.
(a) The area of the triangle $A B C$ equals \qquad .
(b) The sine of the angle $A C B$ equals
(c) The sine of the angle $A B C$ equals \qquad

Task 6.13 (0-1) (2019 - task 08)
The acute angle of a rhombus is 30°, and the area of the rhombus is $\frac{361}{2}$. The side length of this rhombus is
A. 76
B. $76 \sqrt{2}$
C. 19
D. $19 \sqrt{2}$

Task 6.14. (0-1) (2019 - task 09)
The sine of an obtuse angle α is: $\sin \alpha=\frac{2 \sqrt{2}}{3}$. Therefore the cosine of this angle equals
A. $\cos \alpha=\frac{1}{9}$
B. $\cos \alpha=\frac{1}{3}$
C. $\cos \alpha=-\frac{1}{3}$
D. $\cos \alpha=-\frac{1}{9}$

Task 6.15. (0-1) (2019 - task 13)
Triangles $K L M$ and $P Q R$ are similar. The area of the triangle $K L M$ is 6 , and the area of the triangle $P Q R$ is 90 units greater than the area of the $K L M$ triangle. The perimeter of the triangle $K L M$ equals 12 . Hence, the perimeter of the triangle $P Q R$ equals:
A. 102
B. 48
C. 768
D. 192

Task 6.16. (0-1) (2020 - task 07)
The length of the side of a square is reduced by 10 percent. Then, the area of the square will be reduced by:
A. 9%
B. 10%
C. 19%
D. 81%

Task 6.17. (0-1) (2020 - task 11)
The area of a rectangle is 27 . One side of this rectangle is 3 times the length of the other side. The perimeter of the rectangle is:
A. 12
B. 18
C. 24
D. 27

Task 6.18. (0-1) (2020 - task 14)
In the triangle $A B C$, the line segments $A B$ and $D E$ are parallel (refer to the figure below), and $|C D|=1,|D E|=3$ and $|A B|=9$.

Hence
06. Planimetry
A. $|A D|=2$
B. $|A D|=\frac{7}{3}$
C. $|A D|=3$
D. $|A D|=\frac{10}{3}$

Task 6.19. (0-1) (2021 - task 10)
The area of the parallelogram $A B C D$ is equal to P. Points E and F are the midpoints of the sides $B C$ and $C D$ respectively. The area of the triangle $A E F$ is equal to
A. $\frac{1}{8} P$
B. $\frac{1}{4} P$
C. $\frac{3}{8} P$
D. $\frac{1}{2} P$

Task 6.20. (0-1) (2021 - task 11)
We are given a circle \mathcal{O} and a point P outside the circle. Lines k and l pass through the point P. The line k crosses the circle \mathcal{O} at points A and B (where $|P A|<|P B|)$ and passes through its centre. The line l is a tangent to the circle \mathcal{O} at point C. The angle between the lines k and l is 60°. The angle $C B A$ is equal to
A. 15°
B. 30°
C. 45°
D. 60°

Task 6.21. (0-1) (2021 - task 12)
The arithmetic mean of the lengths of the bases of an isosceles trapezium is equal to 9 , and the area of the trapezium is equal to 36 . The tangent of the angle between the diagonal of the trapezium and the base of the trapezium is equal to
A. $\frac{9}{4}$
B. $\frac{4}{9}$
C. $\frac{1}{4}$
D. $\frac{1}{9}$

